Multiplication Operators on Second Order Cesaro-Orlicz Sequence Spaces

نویسندگان

چکیده

The main purpose of this paper is to characterize the compact, invertible, Fredholm and closed range multiplication operators on second Ces\`{a}ro-Orlicz sequence spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Geometric properties in Orlicz- Cesaro Spaces

On the OrliczCesaro sequence spaces ( ces ) which are defined by using Orlicz function , we show that the space ces equipped with both Amemiya and Luxemburg norms possesses uniform Opial property and uniform Kadec-Klee property if satisfy the 52 -condition.

متن کامل

Weighted Composition Operators on Orlicz Spaces

In this paper we study weighted composition operators on Orlicz spaces. Introduction : Let X and Y be two non empty sets and let F(X) and F(Y) be denoted the topological vector spaces of complex valued functions on X and Y respectively. If T : Y → X is a mapping such that f oT ∈ F (Y) whenever f ∈ F (X), then we can define a composition transformation C T : F (X) → F (Y) by C T f = f oT for eve...

متن کامل

Characterization of matrix operators on Orlicz spaces

We give equivalent conditions for tensor product of Orlicz sequence spaces, then we obtain a necessary and sufficient condition for a class of matrix operators acting on Orlicz sequence spaces to be continuous and compact.

متن کامل

On difference sequence spaces defined by Orlicz functions without convexity

In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical sciences and applications e-notes

سال: 2021

ISSN: ['2147-6268']

DOI: https://doi.org/10.36753/mathenot.944392